Predictive Analytics for ETL Pipeline Failure Forecasting in CI/CD-Enabled Cloud Data Ecosystems
Abstract
Full Text:
PDFReferences
Abadi, D. J. (2012). The design space of modern data systems: Cloud, large-scale, and NoSQL. Communications of the ACM, 55(10), 78–86.
Aggarwal, C. C. (2013). Data mining: The textbook. Springer.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209.
Chen, Y., Alspaugh, S., & Katz, R. (2012). Interactive analytical processing in big data systems: A cross-industry study. Proceedings of the VLDB Endowment, 5(12), 1802–1813.
Dean, J., & Barroso, L. (2013). The tail at scale. Communications of the ACM, 56(2), 74–80.
Dietterich, T. G. (2000). Ensemble methods in machine learning. Lecture Notes in Computer Science, 1857, 1–15.
Erl, T. (2014). Cloud computing: Concepts, technology & architecture. Prentice Hall.
Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S. (2012). Interactions with big data analytics. Communications of the ACM, 55(9), 59–66.
Gartner. (2011). Market guide for application performance monitoring. Gartner Research.
Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google file system. ACM SIGOPS Operating Systems Review, 37(5), 29–43.
Guo, P., & Engler, D. (2011). Using anomaly detection to search for software bugs. Proceedings of HotOS, 1–5.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Springer.
Kellogg, C., & Arrowood, A. (2008). Improving ETL reliability through metadata-driven automation. IBM Systems Journal, 47(4), 623–637.
Kimball, R., & Caserta, J. (2004). The data warehouse ETL toolkit. Wiley.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Liu, H., & Yu, L. (2005). Feature selection for classification. IEEE Transactions on Systems, Man, and Cybernetics, 35(2), 106–116.
Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. NIST Special Publication 800-145.
Salfner, F., Lenk, M., & Malek, M. (2010). A survey of online failure prediction methods. ACM Computing Surveys, 42(3), 1–42.
Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., ... & Stoica, I. (2013). Discretized streams: A fault-tolerant model for scalable stream processing. Proceedings of the ACM Symposium on Cloud Computing, 1, 1–14.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 International Journal of Sustainable Development in Computing Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A Double-Blind Peer Reviewed Journal